Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 886429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720306

RESUMO

In recent years, immunotherapy for cancer has become mainstream with several products now authorized for therapeutic use in the clinic and are becoming the standard of care for some malignancies. Chimeric antigen receptor (CAR)-T cell therapies have demonstrated substantial efficacy for the treatment of hematological malignancies; however, they are complex and currently expensive to manufacture, and they can generate life-threatening adverse events such as cytokine release syndrome (CRS). The limitations of current CAR-T cells therapies have spurred an interest in alternative immunotherapy approaches with safer risk profiles and with less restrictive manufacturing constraints. Natural killer (NK) cells are a population of immune effector cells with potent anti-viral and anti-tumor activity; they have the capacity to swiftly recognize and kill cancer cells without the need of prior stimulation. Although NK cells are naturally equipped with cytotoxic potential, a growing body of evidence shows the added benefit of engineering them to better target tumor cells, persist longer in the host, and be fitter to resist the hostile tumor microenvironment (TME). NK-cell-based immunotherapies allow for the development of allogeneic off-the-shelf products, which have the potential to be less expensive and readily available for patients in need. In this review, we will focus on the advances in the development of engineering of NK cells for cancer immunotherapy. We will discuss the sourcing of NK cells, the technologies available to engineer NK cells, current clinical trials utilizing engineered NK cells, advances on the engineering of receptors adapted for NK cells, and stealth approaches to avoid recipient immune responses. We will conclude with comments regarding the next generation of NK cell products, i.e., armored NK cells with enhanced functionality, fitness, tumor-infiltration potential, and with the ability to overcome tumor heterogeneity and immune evasion.


Assuntos
Neoplasias Hematológicas , Neoplasias , Neoplasias Hematológicas/etiologia , Humanos , Imunoterapia , Imunoterapia Adotiva/efeitos adversos , Células Matadoras Naturais , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244432

RESUMO

Natural killer (NK) cells comprise one subset of the innate lymphoid cell (ILC) family. Despite reported antitumor functions of NK cells, their tangible contribution to tumor control in humans remains controversial. This is due to incomplete understanding of the NK cell states within the tumor microenvironment (TME). Here, we demonstrate that peripheral circulating NK cells differentiate down two divergent pathways within the TME, resulting in different end states. One resembles intraepithelial ILC1s (ieILC1) and possesses potent in vivo antitumor activity. The other expresses genes associated with immune hyporesponsiveness and has poor antitumor functional capacity. Interleukin-15 (IL-15) and direct contact between the tumor cells and NK cells are required for the differentiation into CD49a+CD103+ cells, resembling ieILC1s. These data explain the similarity between ieILC1s and tissue-resident NK cells, provide insight into the origin of ieILC1s, and identify the ieILC1-like cell state within the TME to be the NK cell phenotype with the greatest antitumor activity. Because the proportions of the different ILC states vary between tumors, these findings provide a resource for the clinical study of innate immune responses against tumors and the design of novel therapy.


Assuntos
Neoplasias de Cabeça e Pescoço/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Microambiente Tumoral/imunologia , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Antineoplásicos/metabolismo , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Interleucina-15/metabolismo , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Fenótipo , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
3.
Front Immunol ; 12: 648580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968039

RESUMO

Innate lymphoid cells (ILCs) are a branch of the immune system that consists of diverse circulating and tissue-resident cells, which carry out functions including homeostasis and antitumor immunity. The development and behavior of human natural killer (NK) cells and other ILCs in the context of cancer is still incompletely understood. Since NK cells and Group 1 and 2 ILCs are known to be important for mediating antitumor immune responses, a clearer understanding of these processes is critical for improving cancer treatments and understanding tumor immunology as a whole. Unfortunately, there are some major differences in ILC differentiation and effector function pathways between humans and mice. To this end, mice bearing patient-derived xenografts or human cell line-derived tumors alongside human genes or human immune cells represent an excellent tool for studying these pathways in vivo. Recent advancements in humanized mice enable unparalleled insights into complex tumor-ILC interactions. In this review, we discuss ILC behavior in the context of cancer, the humanized mouse models that are most commonly employed in cancer research and their optimization for studying ILCs, current approaches to manipulating human ILCs for antitumor activity, and the relative utility of various mouse models for the development and assessment of these ILC-related immunotherapies.


Assuntos
Modelos Animais de Doenças , Imunidade Inata/imunologia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/imunologia , Neoplasias/terapia , Animais , Humanos , Células Matadoras Naturais/transplante , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/transplante , Camundongos , Neoplasias/imunologia
4.
Front Immunol ; 12: 624284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717133

RESUMO

Natural killer (NK) cells are effector cells of the innate immune system involved in defense against virus-infected and transformed cells. The effector function of NK cells is linked to their ability to migrate to sites of inflammation or damage. Therefore, understanding the factors regulating NK cell migration is of substantial interest. Here, we show that in the absence of aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, NK cells have reduced capacity to migrate and infiltrate tumors in vivo. Analysis of differentially expressed genes revealed that ankyrin repeat and SOCS Box containing 2 (Asb2) expression was dramatically decreased in Ahr-/- NK cells and that AhR ligands modulated its expression. Further, AhR directly regulated the promoter region of the Asb2 gene. Similar to what was observed with murine Ahr-/- NK cells, ASB2 knockdown inhibited the migration of human NK cells. Activation of AHR by its agonist FICZ induced ASB2-dependent filamin A degradation in NK cells; conversely, knockdown of endogenous ASB2 inhibited filamin A degradation. Reduction of filamin A increased the migration of primary NK cells and restored the invasion capacity of AHR-deficient NK cells. Our study introduces AHR as a new regulator of NK cell migration, through an AHR-ASB2-filamin A axis and provides insight into a potential therapeutic target for NK cell-based immunotherapies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular , Filaminas/metabolismo , Células Matadoras Naturais/enzimologia , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/enzimologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Bucais/imunologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteínas Supressoras da Sinalização de Citocina/genética , Microambiente Tumoral , Ubiquitinação
5.
Otolaryngol Head Neck Surg ; 159(1): 76-84, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29436278

RESUMO

Objective In conjunction with advances made in cytotoxic chemotherapy, radiation, and surgery, immunotherapy has emerged as a fourth modality of treatment for head and neck squamous cell carcinoma (HNSCC). Understanding the mechanisms by which HNSCC evades immune-mediated control will aid in the development of new therapies to augment an antitumor immune response. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a cell surface receptor that is expressed on malignant cells and lymphocytes such as natural killer (NK) cells. We sought to determine whether tumor-derived CEACAM1 inhibits NK cell cytotoxicity and whether blockade of CEACAM1 restores antitumor immunity. Study Design In vitro HNSCC cell line study. Setting Research laboratory. Subject and Methods We utilized a real-time cell analyzer to assess NK cell cytotoxicity against an oral squamous cell carcinoma cell line after modulating CEACAM1 expression by cytokines and shRNA knockdown of CEACAM1 expression. Results NK cells and HNSCC cells both demonstrated cytokine-inducible expression of CEACAM1. Coincubation of NK cells and HNSCC cells resulted in the upregulation of CEACAM1 on the tumor cells. When compared with CEACAM1- cells, CEACAM1+ tumor cells exhibited increased cell growth and increased size and number of organoids in 3-dimensional culture. Notably, CEACAM1+ HNSCC cells were more resistant to NK cell-mediated killing, but the inhibited expression of CEACAM1 by an shRNA construct restored NK cell cytotoxicity. Conclusion Together, these data indicate that CEACAM1 acts as an inducible checkpoint molecule, and they support the idea that targeting CEACAM1 could serve as a novel immunotherapy approach in HNSCC.


Assuntos
Antígenos CD/fisiologia , Moléculas de Adesão Celular/fisiologia , Imunoterapia/métodos , Células Matadoras Naturais/fisiologia , Terapia de Alvo Molecular , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Células Cultivadas , Humanos
6.
Eur J Immunol ; 48(5): 771-776, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29336030

RESUMO

Human natural killer (NK) cells are divided into two subsets: CD56bright and CD56dim NK cells, which differ in maturation, function and distribution. Mechanisms regulating NK cell functions are not completely understood. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, that binds to a variety of endogenous and exogenous molecules, and that has recently been shown to modulate the function and differentiation of immune cells. Here, we studied the expression of AhR and its involvement in the regulation of NK cell functions. We found that AhR mRNA is highly expressed in peripheral CD56bright NK cells and that AhR mRNA expression gradually decreases as NK cells display a more mature phenotype. CD56bright NK cells were highly sensitive to AhR ligands. Specifically, AhR ligands modulated their activation and their expression of NK cell receptors, as well as cytokine secretion which is the major function of these cells. As CD56bright NK cells are highly enriched in tissues and in tumors, our observations point to a possible effect of local AhR ligands in the regulation of the function of CD56bright tissue-resident or intratumoral NK cells.


Assuntos
Antígeno CD56/metabolismo , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos , Ativação Linfocitária/imunologia , RNA Mensageiro/biossíntese , Receptores de Hidrocarboneto Arílico/genética
7.
Mediators Inflamm ; 2015: 436525, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26556954

RESUMO

Emerging evidence suggests a role for sphingosine-1-phosphate (S1P) in various aspects of rheumatoid arthritis (RA) pathogenesis. In this study we compared the effect of chemical hypoxia induced by cobalt chloride (CoCl2) on the expression of S1P metabolic enzymes and cytokine/chemokine secretion in normal fibroblast-like synoviocytes (FLS) and RAFLS. RAFLS incubated with CoCl2, but not S1P, produced less IL-8 and MCP-1 than normal FLS. Furthermore, incubation with the S1P2 and S1P3 receptor antagonists, JTE-013 and CAY10444, reduced CoCl2-mediated chemokine production in normal FLS but not in RAFLS. RAFLS showed lower levels of intracellular S1P and enhanced mRNA expression of S1P phosphatase 1 (SGPP1) and S1P lyase (SPL), the enzymes that are involved in intracellular S1P degradation, when compared to normal FLS. Incubation with CoCl2 decreased SGPP1 mRNA and protein and SPL mRNA as well. Inhibition of SPL enhanced CoCl2-mediated cytokine/chemokine release and restored autocrine activation of S1P2 and S1P3 receptors in RAFLS. The results suggest that the sphingolipid pathway regulating the intracellular levels of S1P is dysregulated in RAFLS and has a significant impact on cell autocrine activation by S1P. Altered sphingolipid metabolism in FLS from patients with advanced RA raises the issue of synovial cell burnout due to chronic inflammation.


Assuntos
Artrite Reumatoide/imunologia , Lisofosfolipídeos/fisiologia , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Membrana Sinovial/imunologia , Hipóxia Celular , Quimiocinas/biossíntese , Cobalto/farmacologia , Fibroblastos/imunologia , Humanos , Proteínas de Membrana/genética , Monoéster Fosfórico Hidrolases/genética , Esfingosina/fisiologia , Estresse Fisiológico , Membrana Sinovial/citologia , Tiazolidinas/farmacologia
8.
Front Immunol ; 6: 478, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441983

RESUMO

Natural killer (NK) cells are the major antiviral effector population of the innate immune system. We previously found that S100A9 is a novel ligand of the receptor CD85j and that S100A9 tetramers enhance the anti-HIV activity of NK cells. Also, we found that dendritic cells (DCs) infected by the HIV vaccine candidate, MVAHIV, prime NK cells to specifically control HIV infection in autologous CD4(+) T cells. In this study, we analyzed whether stimulation of NK cells by S100A9 tetramers prior to the priming by MVAHIV-infected DCs modulates the subsequent anti-HIV activity of NK cells. We found that S100A9 tetramers activate NK cells and that DCs enhance the anti-HIV activity of NK cells. Interestingly, we observed that stimulation of NK cells by S100A9 tetramers, prior to the priming, significantly increased the subsequent anti-HIV activity of NK cells and that the enhanced anti-HIV activity was observed following different conditions of priming, including the MVAHIV-priming. As S100A9 tetramers alone directly increase the anti-HIV activity of NK cells and as this increased anti-HIV activity is also observed following the interaction of NK cells with MVAHIV-infected DCs, we propose S100A9 tetramers as potential adjuvants to stimulate the anti-HIV activity of NK cells.

9.
Vaccine ; 32(43): 5577-84, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25131736

RESUMO

Innate mechanisms are critical for the development of the host immune responses to antigen. Particularly, early interaction between natural killer (NK) cells and dendritic cells (DC) greatly impacts the establishment of both innate and adaptive immune responses. In this study, using an autologous in vitro co-culture system we analyzed the NK cell response against MVAHIV-infected DC as well as the subsequent ability of these MVAHIV-primed NK cells to control HIV-1 infection in autologous DC. We found that NK cells responded early to MVAHIV- or MVAWT-infected DC in terms of degranulation and cytokine production. After a 4-day priming of NK cells by MVAHIV- or MVAWT-infected DC we observed an enhanced proliferation and modulation in the NK cell receptor repertoire expression. Interestingly, we found that MVAHIV-primed NK cells had a significant higher ability to control HIV-1 infection in autologous DC compared to MVAWT-primed NK cells; and this enhanced anti-HIV-1 activity appeared to be HIV-specific as MVAHIV-primed NK cells did not have a better ability to control other viral infections or respond against tumoral cells. Furthermore, we observed that NK cell receptors NKG2D and NKp46 modulate the priming of NK cells. This data provides evidence that in vitro NK cells can be primed by viral vector-infected DC, in the context of a NK/DC culture, to specifically target viral infected cells.


Assuntos
Vacinas contra a AIDS/imunologia , Células Dendríticas/virologia , Infecções por HIV/imunologia , Células Matadoras Naturais/imunologia , Degranulação Celular , Técnicas de Cocultura , Citocinas/metabolismo , Antígenos HIV/imunologia , Humanos , Células Matadoras Naturais/fisiologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo
10.
Eur J Immunol ; 44(8): 2370-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24777763

RESUMO

Natural killer (NK) cells are the major antiviral effector cell population of the innate immune system. It has been demonstrated that NK-cell activity can be modulated by the interaction with dendritic cells (DCs). The HIV-1 vaccine candidate Modified Vaccinia Ankara encoding an HIV polypeptide (MVA(HIV)), developed by the French National Agency for Research on AIDS (ANRS), has the ability to prime NK cells to control HIV-1 infection in DCs. However, whether or not MVA(HIV)-primed NK cells are able to better control HIV-1 infection in CD4(+) T cells, and the mechanism underlying the specific priming, remain undetermined. In this study, we show that MVA(HIV)-primed NK cells display a greater capacity to control HIV-1 infection in autologous CD4(+) T cells. We also highlight the importance of NKG2D engagement on NK cells and DC-produced IL-15 to achieve the anti-HIV-1 specific priming, as blockade of either NKG2D or IL-15 during MVA(HIV)-priming lead to a subsequent decreased control of HIV-1 infection in autologous CD4(+) T cells. Furthermore, we show that the decreased control of HIV-1 infection in CD4(+) T cells might be due, at least in part, to the decreased expression of membrane-bound IL-15 (mbIL-15) on DCs when NKG2D is blocked during MVA(HIV)-priming of NK cells.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Células Cultivadas , Humanos , Leucócitos Mononucleares/imunologia , Vacinas de DNA
11.
Retrovirology ; 10: 122, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24156302

RESUMO

BACKGROUND: The reportedly broad expression of CD85j across different immune cell types suggests an importance for this molecule in the human immune system. Previous reports have shown that this receptor interacts with several HLA class-I molecules, as well as with some viral proteins. We have demonstrated that the subset of CD85j + Natural Killer (NK) cells efficiently controls human immunodeficiency virus type 1 (HIV-1) replication in monocyte-derived dendritic cells (MDDC) in vitro and this led us to hypothesize that the CD85j + NK cell-mediated anti-HIV activity in MDDC is specifically dependent on the interaction between the CD85j receptor and unknown non-HLA class-I ligand(s). RESULTS: In this study, we focused our efforts on the identification of these non-described ligands for CD85j. We found that the CD85j receptor interacts with a calcium-binding proteins of the S100 family; namely, S100A9. We further demonstrated that HIV-1 infection of MDDC induces a modulation of S100A9 expression on surface of the MDDC, which potentially influences the anti-HIV-1 activity of human NK cells through a mechanism involving CD85j ligation. Additionally, we showed that stimulation of NK cells with exogenous S100A9 enhances the control of HIV-1 infection in CD4+ T cells. CONCLUSIONS: Our data show that S100A9 protein, through ligation with CD85j, can stimulate the anti-HIV-1 activity of NK cells.


Assuntos
Antígenos CD/metabolismo , Calgranulina B/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Receptores Imunológicos/metabolismo , Replicação Viral , Células Dendríticas/imunologia , Células Dendríticas/virologia , Humanos , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Ligação Proteica , Mapeamento de Interação de Proteínas
12.
Retrovirology ; 10: 74, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23866914

RESUMO

BACKGROUND: Natural killer (NK) cells constitutively express high levels of Tim-3, an immunoregulatory molecule recently proposed to be a marker for mature and functional NK cells. Whether HIV-1 infection modulates the expression of Tim-3 on NK cells, or the levels of its ligand Galectin-9 (Gal-9), and how signaling through these molecules affects the NK cell response to HIV-1 remains inadequately understood. RESULTS: We analyzed Tim-3 and Gal-9 expression in a cohort of 85 individuals with early and chronic HIV-1 infection, and in 13 HIV-1 seronegative control subjects. HIV-1 infection was associated with reduced expression of Tim-3 on NK cells, which was normalized by HAART. Plasma concentrations of Gal-9 were higher in HIV-1-infected individuals than in healthy individuals. Interestingly, Gal-9 expression in immune cells was significantly elevated in early infection, with monocytes and dendritic cells displaying the highest expression levels, which correlated with HIV-1 viral loads. In vitro, Gal-9 triggered Tim-3 downregulation on NK cells as well as NK cell activation. CONCLUSIONS: Our data suggest that high expression levels of Gal-9 during early HIV-1 infection can lead to enhanced NK cell activity, possibly allowing for improved early control of HIV-1. In contrast, persistent Gal-9 production might impair Tim-3 activity and contribute to NK cell dysfunction in chronic HIV-1 infection.


Assuntos
Galectinas/sangue , Regulação da Expressão Gênica , HIV-1/imunologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Células Matadoras Naturais/imunologia , Proteínas de Membrana/genética , Antirretrovirais/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Células Dendríticas/imunologia , Galectinas/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Monócitos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...